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SUMMARY 
Adaptive learning object selection and sequencing is recognized as among the most interesting 
research questions in intelligent web-based education. In most intelligent learning systems that 
incorporate course sequencing techniques, learning object selection is based on a set of teaching 
rules according to the cognitive style or learning preferences of the learners. In spite of the fact 
that most of these rules are generic (i.e. domain independent), there are no well-defined and 
commonly accepted rules on how the learning objects should be selected and how they should be 
sequenced to make “instructional sense”. Moreover, in order to design highly adaptive learning 
systems a huge set of rules is required, since dependencies between educational characteristics of 
learning objects and learners are rather complex. In this paper, we address the learning object 
selection problem in intelligent learning systems proposing a methodology that instead of forcing 
an instructional designer to manually define the set of selection rules, it produces a decision model 
that mimics the way the designer decides, based on the observation of the designer’s reaction over 
a small-scale learning object selection case. 
 
KEYWORDS: Adaptive Content Selection, Learning Objects, Intelligent Learning Systems 
 
 
INTRODUCTION 
The high rate of evolution of e-learning platforms implies that on the one hand, increasingly 

complex and dynamic web-based learning infrastructures need to be managed more efficiently, 
and on the other hand, new type of learning services and mechanisms need to be developed and 
provided. To meet the current needs, such services should satisfy a diverse range of requirements, 
as for example, personalization and adaptation (Dolog, Henze, Nejdl, Sintek, 2004). The field of 
computational intelligence in web-based education can contribute towards providing web-based 
technologies, methods and techniques for supporting teaching and learning in an intelligent way.  
Learning object selection is the first step to adaptive navigation and adaptive course sequencing. 

Adaptive navigation seeks to present the learning objects associated with an on-line course in an 
optimized order, where the optimization criteria takes into consideration the learner’s background 
and performance on related learning objects (Brusilovsky, 1999), whereas adaptive course 
sequencing is defined as the process that selects learning objects from a digital repository and 
sequence them in a way which is appropriate for the targeted learning community or individuals 
(Knolmayer, 2003). Selection and sequencing is recognized as among the most interesting research 
questions in intelligent web-based education (McCalla, 2000; Dolog, Nejdl, 2003). 
Although many types of intelligent learning systems are available, we can identify five key 

components which are common in most systems, namely, the student model, the expert model, the 
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pedagogical module, the domain knowledge module, and the communication model. Figure 1 
provides a view of the interactions between these modules. 
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Figure 1: Main Components of Intelligent Learning Systems 

 
In most intelligent learning systems that incorporate course sequencing techniques, the 

pedagogical module is responsible for setting the principles of content selection and instructional 
planning. The selection of content (in our case, learning objects) is based on a set of teaching rules 
according to the cognitive style or learning preferences of the learners (Brusilovsky, Vassileva, 
2003). In spite of the fact that most of these rules are generic (i.e. domain independent), there are 
no well-defined and commonly accepted rules on how the learning objects should be selected and 
how they should be sequenced to make “instructional sense” (Mohan, Greer, McGalla, 2003). 
Moreover, in order to design highly adaptive learning systems a huge set of rules is required, since 
dependencies between educational characteristics of learning objects and learners are rather 
complex. 
In this paper, we address the learning object selection problem in intelligent learning systems 

proposing a methodology that instead of forcing an instructional designer to manually define the 
set of selection rules; produces a decision model that mimics the way the designer decides, based 
on the observation of the designer’s reaction over a small-scale learning object selection problem. 
In the next section we discuss the learning object selection process as part of automatic course 

sequencing. The third section discusses the filtering process of learning objects used for reduction 
of learning objects searching space and proposes metadata elements that can be used for learning 
object filtering. The fourth section presents a methodology for capturing expert’s decision model 
on learning objects selection and it constitutes the main contribution of this paper. Finally, we 
present experimental results of the proposed methodology by comparing the resulting learning 
objects selected by the proposed method with those selected by experts. 
 
LEARNING OBJECT SELECTION IN AUTOMATIC COURSE SEQUENCING 
In automatic course sequencing, the main idea is to generate a course suited to the needs of the 

learners. As described in the literature, two main approaches for automatic course sequencing have 
been identified (Brusilovsky, Vassileva, 2003): Adaptive Courseware Generation and Dynamic 
Courseware Generation. 
In Adaptive Courseware Generation the goal is to generate an individualized course taking into 

account specific learning goals, as well as, the initial level of the student’s knowledge. The entire 
course is adaptively generated before presenting it to the learner, instead of generating a course 
incrementally, as in a traditional sequencing context. In Dynamic Courseware Generation on the 
other hand, the system observes the student progress during his interaction with the course and 
dynamically adapts the course according to the specific student needs and requirements. If the 
student’s performance does not meet the expectations, the course is dynamically re-planned. The 
benefit of this approach is that it applies as much adaptivity to an individual student as possible. 
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Both the above mentioned techniques employ a pre-filtering mechanism to generate a pool of 
learning objects that match the general content requirements. This pool can be generated from both 
distributed and local learning object repositories, provided that the appropriate access controls 
have been granted. The filtering process is based on general requirements such as characteristics of 
the language or the media of the targeted learning objects, as well as, on the use of ontologies for 
the domain in question (Domain Knowledge module). The result of the filtering process falls in a 
virtual pool of learning objects that will act as an input space for the content selector. 
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Figure 1: Generalized Framework of Automatic Course Sequencing 

 
After the creation of the initial pool of learning objects, the content selection process is applied 

based on learner characteristics such as accessibility and competency characteristics or even 
historical information about related learning activities, included in the Student Model module. 
Figure 2 presents a generalized framework of the above mentioned course sequencing techniques 
that utilize filtering, content selection and instructional planning processes. In the next sections we 
will present some filtering elements based on the IEEE P1484.12.1 Learning Object Metadata 
(LOM) standard and we will analyze the methodology we propose for the content selection phase 
of automatic course sequencing. 
 
LEARNING OBJECT FILTERING 
The main goal of filtering is the reduction of the searching space. Learning Object Repositories 

often contain hundreds or thousands of learning objects, thus the selection process may require a 
significant computational time and effort. In most intelligent learning systems, learning object 
filtering is based either on the knowledge domain they cover or on the media type characteristics 
they contain (Kinshuk, Oppermann, Patel & Kashihare, 1999). In the IEEE LOM metadata model, 
there exist a number of elements covering requirements such as the subject, the language and the 
media type of the targeted learning object. Table 1 presents the IEEE LOM elements we have 
identified for each one of the above mentioned filtering categories and the conditions required. 
 

Filters IEEE LOM Path Explanation Usage Condition 

LOM/General/Keyword A keyword or phrase describing the 
topic of a Learning Object - Subject 

LOM/General/Coverage The time, culture, geography or region 
to which a Learning Object applies.  - 
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LOM/Classification 

This category describes where a 
Learning Object falls within a particular 

classification system. 

LOM/Classification/Purp
ose = "Discipline" or 

"Idea" 

LOM/General/Language The primary human language/s used 
within a Learning Object. - 

Language 
LOM/Educational/Language The human language used by the typical 

intended user of a Learning Object - 

LOM/Technical/Format Technical data type/s of all the 
components of a Learning Object - 

LOM/Technical/Size 
The size of the digital Learning Object 

in bytes. This element refers to the 
uncompressed size. 

- 

LOM/Technical/Duration Time a continuous Learning Object 
takes when played at intended speed. - 

LOM/Lifecycle/Status The completion status or condition of a 
Learning Object 

LOM/Lifecycle/Status != 
"unavailable" 

Media 

LOM/Rights/Cost Whether use of a Learning Object 
requires some kind of payment. - 

Table 1: LOM elements for Learning Object filtering 
 
Alternatively, filtering can be based on integration of the IEEE LOM metadata model elements 

and ontologies (Urban, Barriocanal, 2003), but those approaches assume that both the domain 
model and the learning objects themselves use the same ontology (Mohan, Greer, McGalla, 2003) 
and limit the filtering only to knowledge domain filtering. 
 
LEARNING OBJECT SELECTION 
Typically, the design of highly adaptive learning systems requires a huge set of rules, since 

dependencies between educational characteristics of learning objects and learners are rather 
complex. This complexity introduces several problems on the definition of the rules required (Wu, 
De Bra, 2001; Calvi & Cristea, 2002), namely: 
- Inconsistency, when two or more rules are conflicting. 
- Confluence, when two or more rules are equivalent. 
- Insufficiency, when one or more rules required have not been defined. 

The proposed methodology is based on an intelligent mechanism that tries to mimic an 
instructional designer’s decision model on the selection of learning objects. To do so, we have 
designed a framework that attempts to construct a suitability function that maps learning object 
characteristics over learner characteristics and vice versa. 
The main advantage of this method is that it requires less effort by the instructional designer, 

since instead of identifying a huge set of rules, only the designer’s selection from a small set of 
learning objects over a reference set of learners is needed. The machine learning technique will try 
then to discover the dependence between learning object and learner characteristics that produce 
the same selection of learning objects per learner as the instructional designer did. 
The proposed methodology does not depend on the characteristics used for learning objects and 

learner modeling, thus can be used for extraction of even complex pedagogy-related dependences. 
It is obvious that since characteristics/requirements like the domain are used for filtering, the 
dependencies produced are quite generic, depending only on the educational characteristics of the 
content and the cognitive characteristics of the learner. 
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Figure 2: Selection Model Extraction Framework 

 
Figure 3 presents a graphical representation of the Selection Model Extraction Framework, 

consisting of three main steps: 
- Step1: Modeling and Selection of Criteria 

The selection methodology is generic, independent of the learning object and the learner 
characteristics used for the selection. In our experiment, we used learning object 
characteristics derived from the IEEE LOM standard and learner characteristics derived from 
the IMS Global Learning Consortium Inc. Learner Information Package (LIP) specification. 
In Table 2 and 3 we have identified the LOM and LIP characteristics respectively, that can be 
used as an input space (set of selection criteria) to the learning object selector. 
There exist many criteria affecting the decision of learning objects selection. Those criteria 

that lead to a straightforward exclusion of learning objects, such as the subject, the language 
and the media type, are used for filtering. The rest set of criteria such as the educational 
characteristics of learning objects are used for selection model extraction, since the 
dependencies of those criteria can model the pedagogy applied by the instructional designer, 
when selecting learning objects. 
Those criteria, due to the complexity of interdependencies between them, are the ones that 

cannot be directly mapped to rules from the instructional designer. Thus an automatic 
extraction method, like the proposed one, is needed. 

Selection 
Criteria IEEE LOM Path Explanation 

LOM/General/Structure Underlying organizational structure of a Learning Object 
General 

LOM/General/Aggregation Level The functional granularity (level of aggregation) of a Learning 
Object. 

Educational LOM/Educational/Interactivity Type Predominant mode of learning supported by a Learning Object 
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LOM/Educational/ Interactivity Level The degree to which a learner can influence the aspect or behavior of 
a Learning Object. 

LOM/Educational/Semantic Density The degree of conciseness of a Learning Object, estimated in terms of 
its size, span or duration. 

LOM/Educational/Typical Age Range Age of the typical intended user. This element refers to developmental 
age and not chronological age. 

LOM/Educational/Difficulty How hard it is to work with or through a Learning Object for the 
typical intended target audience. 

LOM/Educational/Intended End User Role Principal user(s) for which a Learning Object was designed, most 
dominant first. 

LOM/Educational/Context The principal environment within which the learning and use of a LO 
is intended to take place. 

LOM/Educational/Typical Learning Time Typical time it takes to work with or through a LO for the typical 
intended target audience. 

 

LOM/Educational/Learning Resource Type Specific kind of Learning Object. The most dominant kind shall be 
first. 

Table 2: LO Selector Input Space (Learning Object characteristics) 
Selection 
Criteria IMS LIP Path Explanation Usage Condition 

LIP/Accessibility/Preference/typename The type of cognitive preference - 

LIP/Accessibility/Preference/prefcode The coding assigned to the 
preference - 

LIP/Accessibility/Eligibility/typename The type of eligibility being defined - 
Accessibility 

LIP/Accessibility/Disability/typename The type of disability being defined - 
LIP/QCL/Typename, 
LIP/QCL/Title and 

LIP/QCL/Organization should 
refer to a qualification related 

with the objectives of the 
learning goal 

Qualifications 
Certifications 

Licenses 
LIP/QCL/Level The level/grade of the QCL 

LIP/QCL/date > Threshold 
LIP/Activity/Typename, 

LIP/Activity/status, 
LIP/Activity/units and 

LIP/Activity/Evaluation/ 
Typename should refer to a 

qualification related with the 
objectives of the learning goal 

LIP/Activity/date > Threshold 

Activity 

LIP/Activity/Evaluation/noofattempts 
 
 
LIP/Activity/Evaluation/result/interpret
scope   
 
LIP/Activity/Evaluation/result/score 

 The number of attempts made on 
the evaluation. 

 
Information that describes the 

scoring data. 
 

The scoring data itself. 
LIP/Activity/Evaluation/date > 
Threshold 

Table 3: LO Selector Input Space (Learner characteristics) 

- Step2: Selection Model Extraction 
After identifying the set of characteristics/criteria (step1) that will be used as the input space 

of the LO Selector, we try to extract for each learning object characteristic the expert’s 
suitability evaluation model over a reference set of LIP-based characterized learners. The 
input to this phase is the IEEE LOM characteristics of a reference set of learning objects, the 
IMS LIP characteristics of a reference set of learners and the suitability preference of an 
expert for each of the learning objects over the whole reference set of learners. The model 
extraction methodology has the following formulation: 
Let us consider a set of learning objects, called A, which is valued by a set of 

criteria ),...,,( 21 ngggg = . The assessment model of the suitability of each learning object 
for a specific learner, leads to the aggregation of all criteria into a unique criterion that we call 
a suitability function ( ) ( )ngggSgS ,,, 21 K= . We define the suitability function as an 

additive function of the form ( ) ∑
=

=
n

i
ii gsgS

1
)( with the following additional notation:  

- ( )ii gs : Marginal suitability of the ith selection criterion valued 
ig , 
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- ( )gS : Global suitability of a learning object. 
The marginal suitability evaluation for the criterion gi is calculated using the 
formula )exp()( 2xcxbaxs iiii −+= , where x is the corresponding value of the gi learning 
object selection criterion. This formula produces, according to parameters a, b and c as well 
as the value space of each criterion, the main criteria forms, we have identified: 
- Monotonic form: when the marginal suitability of a criterion is a monotonic function; 
- Non monotonic form: when the marginal suitability of a criterion is a non-monotonic 

function. 
The calculation of the optimal values of parameters a, b and c for each selection criterion is 
the subject of the Knowledge Model Extraction step. 
Let us call P the strict preference relation and I the indifference relation. If 

1OS  is the global 

suitability of a learning object O1 and 
2OS  is the global suitability of a learning object O2, 

then the following properties generally hold for the suitability function S:  

)()(

),()(

21

21

21

21

OIOSS

OPOSS

OO

OO

⇔=

⇔>
and the relation IPR ∪=  is a weak order relation. 

The expert’s requested information then consists of the weak order R defined on A for several 
learner instances. Using the provided weak order relation R and based on the form definition 
of each learning object characteristic we can define the suitability 
differences ),,,( 121 −∆∆∆=∆ mK , where m is the number of learning objects in the reference 
set A and 0

1
≥−=∆

+kk OOk SS  depending on the suitability relation of (k) and (k+1) 

preferred learning object for a specific learner of the reference set. 
We can introduce an error function e for each suitability difference: 0

1
≥+−=∆

+ kOOk eSS
kk

. 

Using constrained optimization techniques, we can then solve the non-linear problem: 

Minimize ∑
−

=

1

1

2)(
m

j
je  

Subject to the constraints: 







=∆

>∆

+

+

1

1

O if     0

O if     0

jjj

jjj

OI

OP for each one of the learners of the reference set. 

This optimization problem will lead to the calculation of the optimal values of the parameter 
a, b and c for each learning object selection criteria over the reference set of learners. Figure 4 
presents the introduced error function, the suitability overestimation error as well as the 
suitability underestimation error e, on the ordinal regression curve, which is the suitability 
ranking of the reference set of learning objects versus the approximation of the global 
suitability of each one of the learning objects in the reference set. Figure 5 presents a 
paradigm of marginal suitability extraction result (real expert’s model and the resulted 
approximation), when using Interactivity Type, Interactivity Level, Semantic Density and 
Difficulty as LO selection characteristics for a specific learner. 
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Figure 4: Ordinal Regression Curve (Ranking versus Global Suitability) 

 
Figure 5: Marginal Suitability for a specific Learner (Continuous line represents the real expert’s 

model and the dashed one the resulted approximation) 
 

- Step3: Extrapolation 
The purpose of this phase is to generalize the resulted marginal suitability model from the 

reference set of learners to all learners, by calculating the corresponding marginal suitability 
values for every combination of learner characteristics. This calculation is based on the 
interpolation of the marginal suitability values between the two closest instances of the 
reference set of learners. Suppose that we have calculated the marginal suitability 1L

is  and 
2L

is  of a criterion gi matching the characteristics of learners L1 and L2 respectively. We can 
then calculate the corresponding marginal suitability value for another learner L using 
interpolation if the characteristics of learner L are mapped inside the polyhedron that the 
characteristics of learners L1 and L2 define, using the formula:  

( ) ( ) ( ) ( )[ ]12

12

1
1 L

ii
L
iiL

i
L
i

L
i

L
iL

ii
L
ii gsgs

gg
gggsgs −

−
−

+= , if ( ) ( )12 L
ii

L
ii gsgs >  

Let [ ] niccC iii K,2,1,, *
* ==  be the intervals in which the values of each criterion – for both 

learning object and learners – are found, then we call global suitability surface the space 
i

n
i CC 1=×= . The calculation of the global suitability over the above mentioned space is the 

addition of the marginal suitability surfaces for each of the learning object characteristics over 
the whole combination set of learner characteristics. 
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EXPERIMENTAL RESULTS AND DISCUSSION 
In order to evaluate the total efficiency of the proposed methodology both on calculating the 

suitability on the training set of learning objects and on estimating the suitability of learning 
objects external from the reference set, we have designed an evaluation criterion, defined by: 







=

n
SelectedObjectsLearningCorrect

*100(%) Success , where n is the number of the desired learning 

objects from the virtual pool that will act as input to the instructional planner. We assume that the 
number of desired learning objects is less than the total number of learning objects in the input 
space (learning objects pool) and that both the learning object metadata and the learner 
information metadata have normal distribution over the value space of each criterion.  
Additionally, we have classified the learning objects, for both testing and estimation set, in two 

classes according to their aggregation level, since granularity is a parameter affecting the 
capability of an instructional designer to select learning content for a specific learner. The 
classification is based on the value space of the “General/Aggregation_Level” element of the IEEE 
LOM standard. We present experimental results of the proposed methodology by comparing the 
resulting selected learning objects with those selected by experts. We have evaluated the success 
on both the training set of learning objects (Training Success) and on the suitability estimation of 
learning objects external from the reference set (Estimation Success). Figure 11 and 12 present 
average experimental results for learning objects with aggregation level 1 and 2 respectively. 
If we consider that for one learner instance, the different combinations of learning objects, 

calculated as the multiplication of the value instances of characteristics presented in Table 2, lead 
to more than 900,000 learning objects, it is evident that it is almost unrealistic to assume that an 
instructional designer can manually define the full set of selection rules which correspond to the 
dependencies extracted by the proposed method and at the same time to avoid the inconsistencies, 
confluence and insufficiency of the produced selection rules. 
The proposed methodology is capable of effectively extracting dependencies between learning 

object and learner characteristics affecting the decision of an instructional designer on the learning 
object selection problem.  
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Figure 6: Average Experimental Results for Learning Objects  

More analysis on the results, presented in figures 11 and 12, shows that when the desired number 
of learning objects (n) is relatively small (less than 100), the selected learning objects by the 
extracted decision model are almost similar to those the instructional designer would select. On the 
other hand, when the desired number of learning objects is relatively large (about 500) the success 
of the selection is affected, but remains at acceptable level (about 90%). 
Another parameter affecting the selection success is proved to be the granularity of learning 

objects. Granularity mainly affects the capability of an instructional designer to express selection 
preferences over learning objects. Learning objects with small aggregation level have bigger 
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possibility of producing “gray” decision areas, where the instructional designer cannot decide 
which learning object matches most the cognitive style or learning preferences of a learner. In our 
experiments, learning objects with aggregation level 2, which can be small or even bigger 
collections of learning objects with aggregation level 1, appear to have less possibility of 
producing indifference relations, enabling to make secure decisions even for bigger desired 
number of learning objects (n=200). 
 
CONCLUSIONS 
In this paper we address the learning object selection problem in intelligent learning systems 

proposing a methodology that instead of forcing an instructional designer to manually define the 
set of selection rules; produces a decision model that mimics the way the designer decides, based 
on the observation of the designer’s reaction over a small-scale learning object selection problem. 
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